Neural Network Based Feedback Scheduler for Networked Control System with Flexible Workload
نویسندگان
چکیده
Most control applications closed over a shared network are suffering from the time-varying characteristics of flexible network workload. This gives rise to non-deterministic availability of communication resources and may significantly impact the control performance. In the context of integrating control and scheduling, a novel feedback scheduler based on neural networks is suggested. With a modular architecture, the proposed feedback scheduler mainly consists of a monitor, a predictor, a regulator and an actuator. An online learning Elman neural network is employed to predict the network conditions, and then the control period is dynamically adjusted in response to estimated available network utilization. A fast algorithm for period regulation is employed. Preliminary simulation results show that the proposed feedback scheduler is effective in managing workload variations and can provide runtime flexibility to networked control applications.
منابع مشابه
Markovian Delay Prediction-Based Control of Networked Systems
A new Markov-based method for real time prediction of network transmission time delays is introduced. The method considers a Multi-Layer Perceptron (MLP) neural model for the transmission network, where the number of neurons in the input layer is minimized so that the required calculations are reduced and the method can be implemented in the real-time. For this purpose, the Markov process order...
متن کاملDesigninga Neuro-Sliding Mode Controller for Networked Control Systems with Packet Dropout
This paper addresses control design in networked control system by considering stochastic packet dropouts in the forward path of the control loop. The packet dropouts are modelled by mutually independent stochastic variables satisfying Bernoulli binary distribution. A sliding mode controller is utilized to overcome the adverse influences of stochastic packet dropouts in networked control system...
متن کاملFeedback Scheduling of Priority-Driven Control Networks
With traditional open-loop scheduling of network resources, the quality-of-control (QoC) of networked control systems (NCSs) may degrade significantly in the presence of limited bandwidth and variable workload. The goal of this work is to maximize the overall QoC of NCSs through dynamically allocating available network bandwidth. Based on codesign of control and scheduling, an integrated feedba...
متن کاملTime Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter
In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...
متن کاملNeural Network Based Feedback Scheduling of Multitasking Control Systems
To cope with resource constraints in multitasking control systems, feedback scheduling is emerging as an important technique for integrating control and scheduling. The ability of neural networks (NNs) as good and robust nonlinear function approximators, reducing the computation time as compared against algorithmic solutions, suggests applying them to the feedback scheduling problem. A novel, s...
متن کامل